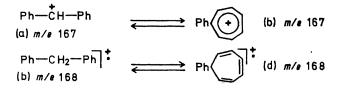

Hydrogen and Carbon Scrambling in the Molecular Ions of Diphenylmethane Derivatives¹

By T. K. Bradshaw, J. H. Bowie,* and P. Y. White

(Department of Organic Chemistry, University of Adelaide, South Australia 5001)

Summary Hydrogen and carbon scrambling precedes the losses of methyl radicals from m/e 168 and 167 in the spectra of diphenylmethane and its derivatives.

THE mass spectra of diphenylmethane derivatives have been reported previously.²⁻⁷ Two suggestions, based on deuterium labelling data, which pertain to the loss of a methyl radical from m/e 167 ($C_{13}H_{11}^+$) are:—(i) that the methyl radical is formed from the central CH unit together with two ortho-hydrogens,⁴ and (ii) that the elimination is


preceded by complete hydrogen scrambling.⁵ We have examined the abundances of fragment ions and metastable ions (formed in the first field-free region of the double focussing mass spectrometer^{8,9}) in the spectra of (1)—(10)in order to clarify both this and other fragmentations.

The results listed in Table 1 confirm the earlier suggestion⁵ that complete hydrogen scrambling precedes the elimination of a methyl radical from m/e 167. The ratio of the metastable ions for the processes m/e 168 \rightarrow 153 and $m/e \ 168 \rightarrow 152 \ (m^* = 139.5 \text{ and } 137.5 \text{ respectively})$ in the spectrum of (8) is 13:1 at 70 ev, and 15.1 at 15 ev. The calculated value for random loss is 12:1.

TABLE 1

Abundances	of [(M –	- Br•) — CF	I ₂ D•3] ionsª fo	r (4)-	-(6) at	$25~{ m ev}$		
Compound	(M	Br•)	— СН	•:	CH ₂ D•: -	- СН	D ₂ •:-	-CD ₃ •		
	Found					Calculated				
(4)	70	30			73	27				
(5)	34	49	15.5		34	49	15	2		
(6)	14	42	34.5	9.5	15	41	34	10		

^a The ratios obtained for fragment ions and metastable ions are almost identical.

At 70 ev the processes $M - \text{Me}^{\bullet}$ and $(M - \text{H}^{\bullet}) - \text{Me}^{\bullet}$ produce m/e 153 and 152 respectively in the spectra of (1) and (9). The latter process does not occur at 15 ev. The incorporation of ¹³C in the molecular ion of (7) is 60·1%, and the 15 ev spectrum of this compound shows an incorporation of 55·3% for the $M - \text{Me}^{\bullet}$ ion (complete randomisation 55·5%). The metastable ions for the processes m/e169 \rightarrow 154 and 169 \rightarrow 153 occur in the ratio 15:1 (randomisation 12:1) at 15 ev. The data in Table 2 show that hydrogen randomisation occurs, (cf. ref. 6) and the similarity between the values of (2) and (10) support the suggestion⁵ that (d) may be implicated in the rearrangement. The enhanced loss of deuterium from the even-electron species is similar to that observed for the losses of Me. from the 9,10-dihydrophenanthrene^{10,11} and stilbene¹¹ molecular ions.

The hydrogen and carbon scrambling which precedes the losses of Me[•] from m/e 167 and m/e 168 can be explained by

TABLE 2

Abundances	of	M —	$CH_x D_{\cdot_{3-x}}$	fo r	(2)	and	(10)	at	15 ev	
------------	----	-----	------------------------	-------------	-----	-----	------	----	-------	--

Compound	$\begin{array}{c} M - \operatorname{CH}_{3^{\bullet}} : - \operatorname{CH}_{2} \mathrm{D}_{\bullet} \\ \mathrm{Found} \end{array}$					$: - CHD_{2^{\bullet}}: - CD_{3^{\circ}}$ Calculated				
(2) (10)	21 20	38 37	$31.5 \\ 33$	9.510	15	4 8	32	5		

the reversible processes (a) \rightarrow (b) and (c) \rightarrow (d)^{5,12} with the central carbon unit (together with its substituents) inserting randomly into each C--C bond of the phenyl ring. This is likely to be accompanied by independent scrambling of the hydrogens of the seven and six carbon units during each cycle [e.g. (a) \rightarrow (b)]. Our carbon scrambling observations are analogous to results obtained for $(\alpha, l^{-13}C_2]$ toluene, ¹³ and should be contrasted with loss of Ph. from the diphenylmethane 1-13C molecular ion, which occurs with no loss of the label (cf. ref. 6). We also suggest that ¹³C labelling data for the losses of Me[•] from the o-terphenyl¹⁴ and triphenylmethane¹² molecular ions are consistent with complete carbon scrambling.

(Received, March 4th, 1970; Com. 310.)

- ¹ Previous paper in this series, Org. Mass Spectrometry, in the press.
 ² S. Meyerson, H. Drews, and E. K. Fields, J. Amer. Chem. Soc., 1964, 86, 4964.
 ⁸ J. H. D. Eland and C. J. Danby, J. Chem. Soc., 1965, 5935.
 ⁴ R. A. W. Johnstone and B. J. Millard, Z. Naturforsch., 1966, 21a, 604.
 ⁵ D. H. Williams, R. S. Ward, and R. G. Cooks, J. Chem. Soc., (B), 1968, 522.
 ⁶ S. Meyerson, H. Hart, and L. C. Leitch, J. Amer. Chem. Soc., 1968, 90, 3419.
 ⁷ J. Lesko, V. Vesely, and S. Korcek, Coll. Czech. Chem. Comm., 1969, 34, 2836.
 ⁸ A. H. Struck and H. W. Major, jun., Paper presented to the ASTM E 14 Meeting, May 18-23, 1969, Dallas, Texas.
 ⁹ F. Taiima and I. Seibl. L. Mass Spectrometry and Ion Physics, 1969, 3, 245. references therein.
- ⁹ E. Tajima and J. Seibl, J. Mass Spectrometry and Ion Physics, 1969, 3, 245, references therein. ¹⁰ A. Maquestiau, Y. van Haverbeke, and F. Delalieu, Bull. Soc. chim. belges, 1968, 77, 355; 1969, 78, 589.
- ¹¹ P. F. Donaghue, P. Y. White, J. H. Bowie, B. D. Roney, and H. J. Rodda, Org. Mass Spectrometry, 1969, 2, 1061.
 ¹² K. D. Berlin and R. D. Shupe, Org. Mass Spectrometry, 1969, 2, 447.
 ¹³ K. L. Rinehart, A. C. Buchholz, G. E. van Lear, and L. C. Cantrell, J. Amer. Chem. Soc., 1968, 90, 2983.

- 14 A. Copet and S. Facchetti, Org. Mass Spectrometry, 1968, 1, 881.